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RESUMO 

 
A pesquisa ora apresentada teve por objetivo responder à sequinte questão: De que maneira o 
formalismo e a axiomatização surgem nos processos de unificação e generalização de conceitos 
subjacentes à Álgebra Linear, em seu processo de constituição histórica e epistemológica? Para tal, 
realizamos uma investigação bibligráfica nos trabalhos de Dorier (1995,2000) e Moore (1995), os quais 
discutem o desenvolvimento histórico e epistemológico da Álgebra Linear enquanto zona de inquérito, 
bem como os fundamentos matemáticos desse processo. A partir da leitura e de exercícios reflexivos 
sobre esses trabalhos, foi possível concluir que formalismo e axiomatização surgem como linguagens 
técnicas complementares e necessárias aos processos de unificação e generalização de problemas de 
linearidade, as quais permitiram a constituição da Álgebra Linear como campo que estuda os módulos 
sobre um anel e seus homomorfismos, que conhecemos por transformações lineares, os quais são 
representados por matrizes quando o módulo tem uma base finita.  
 
Palavras-chave: Educação Matemática. Álgebra Linear. Formalismo. Axiomatização. 
 

ABSTRACT 
 

The research presented here aimed to answer the following question: How do formalism and 
axiomatization emerge in the processes of unification and generalization of concepts underlying Linear 
Algebra, in its process of historical and epistemological constitution? To this end, we conducted a 
bibliographical investigation in the works of Dorier (1995, 2000) and Moore (1995), which discuss the 
historical and epistemological development of Linear Algebra as an area of inquiry, as well as the 
mathematical foundations of this process. From the reading and reflective exercises on these works, it 
was possible to conclude that formalism and axiomatization emerge as complementary and necessary 
technical languages for the processes of unification and generalization of linearity problems, which 
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allowed the constitution of Linear Algebra as a field that studies modules over a ring and their 
homomorphisms, which we know as linear transformations, which are represented by matrices when the 
module has a finite base.  
 
Keywords: Mathematical Education. Linear Algebra. Formalism. Axiomatization. 
 

RESUMEN 
 

La investigación aquí presentada tuvo como objetivo responder a la siguiente pregunta: ¿Cómo surgen el 
formalismo y la axiomatización en los procesos de unificación y generalización de conceptos que 
subyacen al Álgebra Lineal, en su proceso de constitución histórica y epistemológica? Para ello, 
realizamos una investigación bibliográfica en los trabajos de Dorier (1995, 2000) y Moore (1995), que 
discuten el desarrollo histórico y epistemológico del Álgebra Lineal como zona de investigación, así como 
los fundamentos matemáticos de este proceso. A partir de lecturas y ejercicios de reflexión sobre estos 
trabajos, fue posible concluir que el formalismo y la axiomatización emergen como lenguajes técnicos 
complementarios y necesarios para los procesos de unificación y generalización de problemas de 
linealidad, lo que permitió la constitución del Álgebra Lineal como un campo de estudio. los módulos de 
un anillo y sus homomorfismos, que conocemos como transformaciones lineales, que se representan 
mediante matrices cuando el módulo tiene base finita. 
 
Palabras clave: Educación Matemática. Álgebra lineal. Formalismo. Axiomatización. 
 
 
1 INTRODUÇÃO 

 

A Álgebra Linear, campo que estuda os espaços vetoriais e as suas trasnformações 

lineares, consiste em uma das primeiras disciplinas nas quais os alunos do curso de licenciatura 

em Matemática têm contato com o rigor e o formalismo necessário no estudo dos objetos 

matemáticos, isto é, na qual se faz indispensável o uso de explicações lógicas para concepções 

conceituais adotadas e procedimentos operacionais executados (DIAS, 2022). 

No entanto, segundo Dorier et. al. (1994), esse encontro não ocorre de maneira muito 

tranquila, uma vez que os alunos têm a sensação de estar ‘pousando’ em um planeta totalmente 

diferente e não conseguem encontrar caminhos nesse novo mundo. Dentre as principais críticas 

proferidas por esses novos habitantes, encontram-se o formalismo e a axiomatição com as 

quais os conceitos da Álgebra Linear são tratados. 

Os estudos brasileiros também têm corroborado com a ideia da linguagem formal e 

axiomática como obstáculos de aprendizagem. Em tais estudos, o formalismo e a axiomatização 

impossibilitam o aluno de visualizar os vetores em diferentes contextos, tais como geométrico 

ou computacinal, ou ainda em elementos diferentes das tradicionais n-uplas, a saber, matrizes, 

funcões, polinômios, etc. (GRANDE, 2006; ANDRADE, 2006; SOUZA, 2016). 
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No entanto, ainda que haja uma caracterização negativa do formalismo e da 

axiomatização, Dorier (1998) defende que estes, na verdade, consistem em elementos-chave da 

disciplina, uma vez que possibilitam a compreensão do caráter unificador e generalizante da 

Álgebra Linear, o qual está intimamente ligado à sua constitução histórica e epistemológica 

enquanto campo de investigação e, posteriormente, campo disciplinar. 

Frente a esse cenário, colocamo-nos diante da seguinte questão: De que maneira o 

formalismo e a axiomatização surgem nos processos de unificação e generalização de conceitos 

subjacentes à Álgebra Linear, em seu processo de constituição histórica e epistemológica?  

Para respondê-la, desenvolvemos a pesquisa bibliográfica apresentada neste trabalho, 

cujo objetivo foi investigar como o formalismo e a axiomatização se fizeram presentes no âmbito 

dos processos de unificação e generalização inerentes ao desenvolvimento histórico-

epistemológico de conceitos subjacentes à Álgebra Linear.  

Maiores esclarecimentos sobre a temática objeto de estudo deste trabalho são 

apresentados nas seções subsequentes.  

 

2 OS PRIMEIROS CONCEITOS DA ÁLGEBRA LINEAR 

 

Fundamentados na proposta de apresentar o desenvolvimento histórico de conceitos 

que compõem a Álgebra Linear, firmada neste trabalho, fez-se necessário a adoção de um marco 

inicial a partir do qual esse processo seria começado. A adoção de um ponto de partida emergiu 

como basilar nesse contexto haja vista que, ainda que a disciplina em questão seja relativamente 

nova no meio acadêmico, os conceitos que a compõem são manuseados desde o tempo de 

civilizações antigas, tais como babilônios, egípcios e chineses. 

O marco inicial adotado no presente trabalho fora o estudo analítico dos sistemas de 

equações lineares. Para Dorier (1995), apesar desses sistemas terem sido objetos de 

investigação em civilizações antigas, tais como as citadas anteriormente, um olhar mais intuitivo 

sobre estes, os sistemas de equação, no século XVIII, constituiu o contexto no qual os primeiros 

conceitos da Álgebra Linear foram desenvolvidos. 

Os primeiros passos no decurso de uma análise mais sistemática acerca das equações 

lineares foram dados em 1750 pelos matemáticos Gabriel Cramer (1704 – 1752) em sua 

Introduction à l’analyse des courbes algébriques, na qual foi apresentada uma estrutura que 
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preconiza os determinantes, e por Leonhard Euler (1705 – 1783) em seu Sur une contradiction 

apparente dans la doctrine des lignes courbes, no qual foi discutido o paradoxo de Cramer em 

relação às curvas algébricas (Dorier, 1995). 

No início do século XVIII, duas proposições eram consideradas verdadeiras, embora 

parcialmente comprovadas, a saber: 

 

1) Duas curvas algébricas distintas de ordem 𝑚 e 𝑛 têm 𝑚 × 𝑛 pontos em comum. Era 
sabido que alguns poderiam ser múltiplos, complexos ou infinitos, mas os 
matemáticos também conheciam exemplos em que esses pontos eram todos simples 
e reais.  
2) 𝑛 × (𝑛+3)

2
 pontos são necessários e suficientes para determinar uma curva de ordem 

𝑛 (DORIER, 1995, p. 228, tradução nossa). 
 

O paradoxo consiste na segunda proposição, na qual para n maior que dois ocorre que 
𝑛 × (𝑛+3)

2
≤ 𝑛², ou seja, duas curvas algébricas podem obter mais pontos do que o necessário para 

determinar cada uma. Esse paradoxo havia sido identificado inicialmente por Colin MacLaurin 

em 1720, porém Cramer reformulou-o em seu tratado no ano de 1750.  

No mesmo ano, Euler percebeu que nem sempre isso era verdade, e para demonstrá-lo 

realizou um estudo analítico e intuitivo de sistemas de equações em que o número de incógnitas 

era igual ao número de equações e chamou atenção para um ‘incidente’.  

Euler tomou inicialmente um sistema contendo duas equações 

3𝑥 − 2𝑦 = 5         e       4𝑦 = 6𝑥 − 10 

e, por meio do processo de eliminação e substituição, concluiu que era impossível determinar 

as duas incógnitas, pois ao tentar eliminar x, y desaparecia e uma equação idêntica surgia.  

Euler explicou que o motivo do aparecimento desse ‘incidente’ seria o fato de que a 

primeira equação nada mais era do que o dobro da segunda e assim não se diferenciariam em 

nada (DORIER, 1995). 

Como o fato de uma equação ser o dobro da outra não era suficiente para evidenciar tal 

‘incidente’, Euler teve que resolver o sistema por eliminação e substituição para convencer 

outros matemáticos. Ele também apresentou exemplos para três e quatro equações, nos quais 

havia incógnitas que ficariam indeterminadas devido às relações lineares entre essas equações 

(Dorier, 1995). Após a resolução e discussão dos mais diversos exemplos, Euler concluiu que: 
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Quando sustentamos que, para determinar 𝑛 quantidades desconhecidas, é suficiente 
ter 𝑛 equações que expressam sua relação mútua, devemos adicionar a restrição de 
que todas as equações são diferentes umas das outras, ou de que nenhuma das 
equações está contida nas outras” (EULER, 1750 apud DORIER, 1995, p. 230, tradução 
nossa) 

 

Assentados em uma visão moderna da Álgebra Linear, visualizaríamos o termo ‘uma 

equação contida nas outras’, empregado por Euler, como o atual conceito de dependência e 

independência linear, entretanto, tais conceitos referem-se a uma relação entre vetores 

emergentes de diferentes naturezas, enquanto que a noção trabalhada por Euler está imersa em 

um contexto particular de equações. Desse modo, Dorier (1995; 2000) defende que Euler 

introduziu a noção de Dependência Inclusiva. 

 Segundo Dorier (1995; 2000), ambas as dependências se equivalem quando trabalhadas 

no contexto das equações, porém a de Euler é mais local e a noção de dependência e 

independência linear correga consigo um caráter unificador e generalizante, uma vez que unifica 

e generaliza essa relação de dependência para os demais objetos matemáticos, tais como n-

uplas, matrizes, funções, polinômios etc. 

Ainda no contexto dos sistemas de equações apresentados por Euler, no caso em que o 

sistema possuía quatro equações e quatro incógnitas evocou-se a noção embrionária do que 

seria conhecido futuramente como posto, bem como no qual também foram desenvolvidas 

considerações semelhantes em relação ao paradoxo de Cramer: 

 

Quando duas linhas de quarta ordem se encontram em 16 pontos, pois 14 pontos, 
quando conduzem a equações diferentes, são suficientes para determinar uma linha 
desta ordem, esses 16 pontos serão sempre tais que três ou mais equações já estão 
compreendidas nas demais. Desta forma, esses 16 pontos não determinam mais do 
que se houvesse 13 ou 12 ou até menos pontos e para determinar a curva inteiramente, 
deve-se adicionar a esses 16 pontos um ou dois outros (EULER, 1750 apud DORIER, 
1995, p. 230, tradução nossa). 

 

Dorier (2000) pontua que, embora a análise intuitiva de Euler tenha sido profícua para o 

surgimento de noções matemáticas que preconizam os conceitos de dependência e posto, ela 

não teve uma grande repercussão devido a rápida aceitação e utilização dos determinantes de 

Cramer para a resolução de sistemas de equações, os quais exigiam mais técnica do que 

intuição. 

De fato, Wussing (1998) assegura que apesar de Gottfried Wilhelm Leibniz (1646 – 1716) 
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ter sinalizado a manipulação de expressões semelhantes aos determinantes em uma carta 

enviada à L’Hospital (1661 – 1704) no ano de 1693, foi a partir de Cramer que os determinantes 

se converteram em um patrimônio geral dos matemáticos utilizado em álgebra, geometria a 

análise. 

Segundo Dorier (1995; 2000), por quase um século as questões relacionadas aos 

sistemas indeterminados e impossíveis de equações lineares foram negligenciadas por 

matemáticos, e como consequência os conceitos de dependência e posto, que emergem dessas 

questões, passaram por um longo processo de obscuridade.  

Por volta de 1840 a 1879 o conceito de posto se constituiu dentro da teoria dos 

determinantes, contudo, para que esse conceito pudesse ser construído, os matemáticos 

tiveram que adotar uma definição unificada de dependência para equações e n-uplas, assim 

como, anteciparam o conceito de dualidade (DORIER, 1995; 2000) 

Com relação à definição unificada de dependência para equações e n-uplas, George 

Ferdinand Frobenius (1849 – 1917 foi quem primeiro a apresentou em seu Über das Pfaffsche 

Problem, publicado em 1875: 

 

Várias soluções particulares A1
(x)

, … , An
(x)

, (x = 1, … , k) deve, portanto, significar 
independente ou diferente se c1Aα

(x)
+ ⋯ + ckAα

(x) não pode ser zero para α = 1, … , n 
sem que todo c1, … , ck seja igual a zero, ou seja, se a forma k linear para 
A1

(x)
u1, … , An

(x)
un são independentes (FROBENIUS, 1875, p. 223 apud DORIER, 2000, 

p. 12, tradução nossa) 
 

Frobenius, ao considerar equações e n-uplas como objetos de mesma natureza em 

relação a linearidade, possibilitou uma grande contribuição em direção ao conceito moderno de 

vetor, além do que, obteve elementos que lhe permitisse apresentar uma definição de posto em 

um caráter mais generalizado, como ordem máxima de um menor não zero. 

Segundo Dorier (2000), os matemáticos da época compreenderam rapidamente a 

importância do conceito de posto, uma vez que não apenas evitou o uso de circunlocuções 

longas, mas também possibilitou soluções mais fáceis e claras para muitos problemas no 

contexto dos determinantes. Frobenius também mostrou a eficiência de seu novo conceito em 

seus escritos sobre formas quadráticas e equações diferenciais. 

O contexto histórico de criação dos conceitos de dependência, posto e dualidade, 
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apresentados neste tópico, nos permite refletir acerca da praticidade advinda da linguagem 

unificadora em Álgebra Linear. A simplicidade na resolução de problemas lineares, promovida 

pelo conceito de posto – em um caráter mais generalizado – se tornou realidade a partir da 

adoção de uma linguagem unificadora (definição) das relações de dependência, tanto para 

equações quanto para n-uplas, alcançadas por Frobenius por meio de uma linguagem mais 

formal. 

Além de ter sido subsidiado pela teoria dos determinantes, o desenvolvimento de grande 

parte das ferramentas, desde a álgebra matricial até o estudo das mudanças de coordenadas, 

foi possibilitado por meio da aplicação de métodos analíticos na geometria. Assim, a Geometria 

também se constitui em um campo no qual a Álgebra Linear também se funda. Discorremos com 

mais detalhes sobre esses aspectos na próxima seção. 

 

3 O CÁLCULO GEOMÉTRICO E A EMERGÊNCIA DE NOVAS ÁLGEBRAS 

 

A utilização de artifícios algébricos na resolução de problemas de geometria destacou-

se no início do século XVII a partir dos trabalhos independentes de Pierre de Fermat (1607 – 1665) 

e René Descartes (1596 – 1650). Dado o seu grande poder de simplificação e unificação na 

resolução de problemas de cunho geométrico, o método analítico foi adotado por muitos 

matemáticos e, como consequência, a linearidade tornou-se um ponto de partida e uma questão 

central em diversos problemas desse período (DORIER, 2000). 

Entretanto, apesar de sua notoriedade entre os matemáticos, o método analítico foi 

também alvo de intensas críticas pelos acadêmicos científicos, principalmente com relação à 

arbitrariedade na escolha das coordenadas durante as demonstrações.  

Gottfried Wilhelm Leibniz (1646 – 1716) foi um dos principais críticos do método analítico 

de Descartes. Em uma carta enviada à Christian Huyghens (1629 – 1695) em 1679, mas 

publicada apenas em 1833, Leibniz externalizou seu descontentamento com o tratamento 

algébrico dado aos problemas de linearidades à luz do método analítico e propôs a criação de 

um cálculo geométrico mais intrínseco, o qual chamou de ‘Geometria de situação’, baseada na 

relação de congruência entre n-uplas de pontos. 

Segundo Dorier (1995), apesar de Leibniz não ter logrado êxito na criação de um cálculo 

geométrico intrínseco – haja vista que a relação de congruência não leva em conta as diferentes 
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direções no espaço e nem a orientação, fato que impossibilitou a sua expansão – ele suscitou em 

outros matemáticos o desejo de se chegar à essa ‘Geometria de situação’. 

Nesse contexto, um importante passo rumo à construção de um cálculo geométrico, tal 

como Leibniz propunha, foi dado a partir das tentativas de representação geométrica das 

quantidades imaginárias. Embora essa necessidade estivesse relacionada a legitimação desses 

novos números, o sistema que os contém – apesar de bidimensional – pode ser classificado 

como um sistema vetorial e, assim, contribuiu para o desenvolvimento das primeiras ideias 

vetoriais (DORIER, 2000). 

Jonh Wallis (1616 – 1703) foi um dos primeiros matemáticos a dar uma visão geométrica 

das raízes quadradas dos números negativos, mas o modelo proposto por ele não obteve êxito 

quanto à representação da multiplicação desses números. Posteriormente cinco matemáticos, 

de maneira independente umas das outras, possibilitaram a representação dos números 

complexos, a saber, Caspar Wessel (1745 – 1818) em 1799; Adrien Quentin Buée (1745 – 1825) 

em 1805; Jean Robert Argand (1768 – 1822) em 1806; C. V. Mourey (1791 – 1830) em 1828 e John 

Warren (1796 – 1852) em 1828 (BARONI, 2009). 

Em seu trabalho de 1799, Wessel definiu adição de linhas retas, bem como também 

estabeleceu a soma de três ou mais retas não coplanares e evidenciou a comutatividade dessa 

operação. Após Wessel, Argand e Buée, simultaneamente e separadamente, publicaram em 

1806 tratamentos geométricos semelhantes para os números complexos, o que também 

ocorreu com Morey e Warren em 1828. Há uma possibilidade de Carl Friedrich Gauss (1777 – 

1855) ter descoberto a representação dos complexos ao mesmo tempo que Wessel (BARONI, 

2009). 

Embora os supracitados matemáticos tenham possibilitado, de maneira independente, a 

representação geométrica dos números complexos, foi com Gauss e Cauchy, por volta de 1831 

e 1849, respectivamente, que as representações dos complexos se tornaram amplamente 

conhecidas e aceitas entre os matemáticos. Porém, ainda que o estudo das quantidades 

imaginárias tivesse tido grandes avanços, os matemáticos não conseguiam expandir suas ideias 

para o espaço tridimensional e, assim, criar operações em triplas de números reais (DORIER, 

2000). 

Alicerçados na busca por uma análise geométrica intrínseca, bem como na tentativa de 

expandir a representação dos números complexos, em sua legitimação, para a terceira 
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dimensão, August Ferdinand Möbius (1790 – 1868) e Giusto Bellavitis (1803 – 1880) 

desenvolveram dois diferentes sistemas de análise geométrica, válidos para dimensão dois e 

três, que se tornaram base para a Geometria Vetorial (DORIER, 2000). 

No ano de 1827, Möbius desenvolveu pela primeira vez a noção matemática de segmento 

orientado, além do que definiu a adição de segmentos colineares. Em 1887, Möbius também 

definiu a adição de segmentos não colineares, a multiplicação de um segmento por um escalar 

e ainda dois tipos de produtos de segmentos orientados inspirados nos trabalhos de Hermann 

Grassmann (1809 – 1877). 

Segundo Dorier (1995), apesar da teoria de Möbius figurar uma álgebra de pontos, seu 

propósito era o de exibir um método para resolver problemas geométricos e físicos – o que de 

fato realizou por meio de diversas aplicações convincentes – e não de apresentar uma estrutura 

algébrica detalhadamente. Assim, embora ele tenha apontado alguns aspectos fundamentais da 

geometria vetorial, bem como de seu trabalho estar embasado numa percepção intuitiva de 

espaço, isso não foi o suficiente para oferecer a possibilidade de extensão para o conceito mais 

geral de Espaço Vetorial. 

Em acordo com Dorier (2000), Bellavitis é considerado o primeiro a ter definido algo 

muito próximo ao conceito de vetor geométrico como uma classe de pares equipolente de 

pontos, denominado por ele de equipolência, no ano de 1835. À Bellavites também é creditado 

o mérito da primeira definição para a adição de vetores no espaço, bem como, a definição da 

multiplicação de segmentos de linha dirigidos por um número real e ainda o conceito de 

multiplicação de equipolências. 

 

(2º) Duas linhas retas são chamadas equipolentes se forem iguais, paralelas e dirigidas 
no mesmo sentido.  
(3º) Se duas ou mais linhas retas estão relacionadas de tal forma que a segunda 
extremidade de cada linha coincide com a primeira extremidade da seguinte, então a 
linha que juntamente com essas linhas forma um polígono (regular ou irregular), e que 
é desenhada a partir da primeira extremidade da última linha é chamada de soma 
equipolente (DORIER, 1995, p. 236, tradução nossa). 

  

Embora o cálculo de Bellavitis não oferecesse mais possibilidades que os números 

complexos e que tivesse sido baseado na obra de Buée, ele se recusava a aceitar os imaginários 

como entidades legítimas da Matemática e, por isso, propunha a substituição de grandezas 

imaginárias por entidades geométricas reais. Tal fato estabeleceu uma perspectiva bem 
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diferente no que se refere ao desenvolvimento de um cálculo geométrico. 

Além disso, a preocupação desse matemático era a estrutura algébrica das 

equipolências, apresentadas por ele como um novo tipo de álgebra com a maioria das 

propriedades da álgebra usual, e ainda, com exceção da multiplicação, elas eram 

tridimensionais. Bellavitis mostrou a eficiência de seu método por meio de aplicações na 

geometria e na física (DORIER, 2000). 

Conforme vimos discutindo, a representação geométrica dos números complexos 

constituiu-se em um contexto no qual o desenvolvimento de uma análise geométrica intrínseca 

pôde ser executado. Contudo, ainda que Möbius e Bellavitis tenham conseguido expandir a 

representação de tais números para o espaço tridimensional, o produto entre complexos 

continuava a ser um problema em termos geométricos. 

Um dos principais obstáculos relacionado à representação geométrica do produto entre 

complexos estava relacionado com o paradigma algébrico desse período. Até o século XIX o 

único modelo para álgebra tinha sido dado pela aritmética dos números reais e, portanto, caso 

um novo tipo de álgebra surgisse, ela deveria aderir às (implícitas) propriedades comutativas de 

adição e multiplicação, o que em termos atuais chamaríamos de uma estrutura de corpo 

comutativo (DORIER, 2000). 

A solução para esse problema foi dada por Sir William Rowan Hamilton (1805 – 1865). 

Após suas frustradas tentativas de resolver o problema algebricamente, Hamilton concentrou 

sua análise na natureza geométrica da multiplicação no plano, representada por vetores, e 

assim, notou que esse tipo de multiplicação, além de se basear no produto dos comprimentos 

de cada vetor e no ângulo formado entre eles, também deveria levar em consideração a direção 

da rotação (plano) nos casos em que esse produto se assentava no espaço tridimensional 

(DORIER, 2000). 

Nesse sentido, Hamilton percebeu que era mais conveniente o uso de quádruplas ou 

invés de ternas para que o cálculo geométrico tridimensional fosse possível, além disso, ele 

percebeu que o produto entre as quádruplas não poderia gozar da comutatividade, uma vez que 

as rotações não comutam. 

 Assim, tendo em vista seus resultados, em 1844 Hamilton publicou os primeiros 

elementos do que chamou de ‘Teoria dos Quatérnios’, os quais foram definidos como sendo 

“números algébricos que permitem uma representação geométrica no espaço em que a 
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multiplicação representa, ao mesmo tempo, um produto escalar e um produto vetorial” (Dorier, 

1995, p. 237, tradução nossa). É também nas publicações de Hamilton que vemos pela primeira 

vez os termos vetor e escalar. 

Segundo Dorier (1995), embora os quatérnios tivessem uma grande repercussão no meio 

matemático – a quebra da intocável lei da comutatividade para a multiplicação estimulou o 

estudo de novas álgebras – a teoria de Hamilton contribuiu mais para o desenvolvimento de uma 

análise vetorial do que propriamente para o surgimento da teoria dos Espaços Vetoriais, haja 

vista que a concepção dos matemáticos quanto à possibilidade de um espaço para além da 

terceira dimensão ainda era muito limitada, devido a legitimidade perante a realidade física.  

Contudo, ainda que não tenha havido influências diretas, os quatérnios de Hamilton, 

aliados à descoberta das geometrias não euclidianas e ao desenvolvimento das geometrias 

projetiva e algébrica, foram fundamentais para a construção de uma geometria n-dimensional 

no século XIX. Em tal geometria, baseada nos métodos analíticos e na teoria dos determinantes 

e matrizes, encontram-se os gérmens das primeiras noções de uma teoria de linearidade, e 

assim, da Álgebra Linear (DORIER, 1995). 

Ainda balizado pela busca de um cálculo liberto de coordenadas, tal como Leibniz havia 

idealizado, a criação de uma geometria n-dimensional tornou-se realidade com Hermann 

Grassmann, em seu Die Lineale Ausdehnungslehre, publicado no ano de 1844. Nessa obra fora 

apresentado um sistema totalmente novo, alicerçado em bases filosóficas e geométricas do 

espaço, na qual são reunidas grandezas mais gerais que não cumpriam necessariamente a 

propriedade comutativa, o que corresponde, em termos modernos, a uma apresentação 

axiomática do Espaço Vetorial n-dimensional (BARONI, 2009). 

Além disso, para Táboas (2010), a consolidação de uma linguagem que pudesse 

relacionar a geometria sintética e a análise geométrica era também objetivo de Grassmann, que 

o fez por meio de uma abordagem de vetores, os quais ele concebia como deslocamento ou 

extensões, através de operações de soma e produto entre eles. A representação geométrica de 

extensão adotada por Grassmann era um segmento orientado de reta, da qual ele abstraiu o 

conceito de extensão linear. 

Nessa perspectiva, apesar de Grassmann ter trabalhado com suas ideias no contexto 

geométrico, ele não se limitou em apresentar suas definições em função de um espaço 

tridimensional. A singularidade da obra de Grassmann encontra-se no fato de nela conter bases 
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pertinentes para uma teoria unificada da linearidade, haja vista que o autor introduziu com 

precisão e em um contexto generalizado conceitos elementares da Álgebra Linear. 

O processo de generalização de Grassmann pode ser melhor observado quando este 

discute a relação da ordem do sistema com os conceitos de geração e dependência. Para 

generalizar a sua afirmartiva de que um sistema de n-ésima ordem era gerado por n métodos 

fundamentais e independentes de evolução, Grassmann usou o contraste entre os aspectos 

formais e reais da adição de deslocamento (o que equivale aos nossos vetores) e concluiu que 

“[O] sistema de ordem m é gerável por quaisquer 𝑚 métodos de evolução pertencentes a ele que 

sejam mutuamente independentes” (DORIER, 1995, p. 245, tradução nossa). 

 Para Dorier (1995), essa afirmação de Grassmann fornece uma noção equivalente ao 

conceito moderno de base e dá ao valor m um significado geral próximo ao que conhecemos por 

dimensão. 

Em 1862, após intensas críticas sobre sua obra, Grassmann lançou uma reformulação 

de sua Ausdehnungslehre. Em sua nova edição, o matemático em questão retirou a base 

filosófica que a alicerçava e ainda modificou o modo como os resultados matemáticos eram 

apresentados, os quais passaram a ser dados a priori e definidos por meio de operações, 

conforme era costume da época, além do que, também apresentou conceitos inéditos aos quais 

havia chegado durante a reestruturação de sua obra (DORIER, 1995). 

Um fato interessante, observado em Dorier (1995; 2000), consiste quando Grassmann 

definiu um sistema de 𝑚 unidades, ou seja, um sistema de 𝑚 magnitudes lineares 

independentes, como o sistema de todas as combinações lineares das unidades, pois ele define 

adição, subtração, multiplicação e divisão por um número, e ainda institui uma lista de 

propriedades fundamentais que essas operações deveriam satisfazer, e das quais todas as leis 

algébricas dessas operações decorreriam. 

 

8. Para magnitudes extensas a, b, c. as fórmulas fundamentais se aplicam: 
1) 𝑎 + 𝑏 = 𝑏 + 𝑎 
2) 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 
3) 𝑎 + 𝑏 − 𝑏 = 𝑎 
4) 𝑎 − 𝑏 + 𝑏 = 𝑎 
Prova. 
[...] 
12. As fórmulas fundamentais se aplicam à multiplicação e divisão de magnitudes 
extensas (a, b) por números (𝛼, 𝛽) 
1) 𝛼𝛽 = 𝛽𝛼 
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2) (𝛼𝛽)𝛾 = 𝛾(𝛽𝛼) 
3) (𝑎 + 𝑏)𝛾 = 𝑎𝛾 + 𝑏𝛾 
4) 𝑎(𝛽 + 𝛾) = 𝑎𝛽 + 𝑎𝛾 
5) 𝑎 . 1 = 𝑎 
6) 𝛼𝛽 = 0 
Então, e somente se 𝑎 = 0 ou 𝛽 = 0 
7) 𝛼

𝛽
= 𝛼 .

1

𝛽
, se 𝛽 ≠ 0 (GRASSMANN, 1862 apud DORIER, 2000, p. 26, tradução nossa) 

 

Segundo Dorier (1995), dentre todas as propriedades apresentadas por Grassmann, as 

do parágrafo oito e doze chamam atenção por se assemelhar bastante aos axiomas da estrutura 

moderna do Espaços Vetorial, exceto pela (1) e (7) referente a multiplicação que são meras 

convenções; a (6) que é uma propriedade redundante; e o uso ambíguo da subtração, que 

tornava o conceito de zero e oposto um tanto obscuro. 

Embora a Die Lineale Ausdehnungslehre de Grassmann tenha sido ignorada pelos 

matemáticos, tanto em 1844 quanto em 1862, ela figurou a primeira teoria a conter 

explicitamente uma geometria n-dimensional, na qual conceitos de Álgebra Linear, tais como 

Dependência e Independência Linear, Geradores, Base e Dimensão, foram definidos em sua 

generalidade.  

Além disso, o referido trabalho serviu de suporte para as primeiras noções axiomáticas 

de Espaços Vetoriais e problemas lineares de dimensão finita apresentados no final da década 

de 1880, mas que só vieram a se consolidar por volta de 1920, período no qual os resultados 

apresentados por Grassmann tiveram de ser redescobertos por outros matemáticos. Na próxima 

seção, discute-se melhor tais questões. 

 

4 AS ABORDAGENS AXIOMÁTICAS PARA OS ESPAÇOS VETORIAIS 

 

Conforme colocado na seção anterior, o trabalho de Grassmann constituiu o primeiro 

tratado no qual os conceitos subjacentes à Álgebra Linear foram definidos em sua unificação e 

generalidade e que, apesar de não ter tido a devida atenção dos matemáticos da época, forneceu 

bases para as primeiras noções axiomáticas em Álgebra Linear. 

Giuseppe Peano (1858 – 1932) foi um dos primeiros a chamar atenção ao trabalho de 

Grassmann no decurso de seus estudos envolvendo vetores. Peano trabalhou com as noções de 

vetores de três maneiras distintas ao longo de sua vida: A primeira, em 1887, na forma de n-uplas; 

a segunda, em 1888, na forma de um segmento de linha orientado (diferença B – A de dois pontos 
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A e B) e a terceira, também em 1888, foi o que ele chamou de sistemas lineares, os quais eram 

essencialmente o que consideramos como Espaços Vetoriais sobre o conjunto dos números 

reais (MOORE, 1995). 

A terceira abordagem esteve contida em seu livro Calcolo geométrico secondo 

I’Ausdehnungslehre di H. Grassmann. Esta obra, segundo Peano, tinha por objetivo discutir o 

Cálculo Geométrico idealizado por Leibniz e desenvolvido por Möbius, Bellavitis, Hamilton e 

Grassmann, deixando mais claro e acessível aos matemáticos da época a abordagem deste 

último, a partir de uma releitura do Die Lineale Ausdehnungslehre. Peano apenas introduziu 

ideias próprias nos dois últimos capítulos do livro (MOORE, 1995). 

O capítulo final transformações de sistemas lineares é o de maior interesse, pois é neste 

capítulo que Peano apresentou a definição do que ele nomeou por Sistema Linear, o que em sua 

essência figura como um Espaço Vetorial sobre os números reais. Nesse contexto, ‘<’ significa 

implicação. 

 

Existem sistemas de objetos para os quais as seguintes definições são dadas: 
1) É definida uma equivalência entre dois objetos do sistema, ou seja, uma 
proposição, denotada por 𝑎 = 𝑏 
2) É definida uma soma de dois objetos 𝑎 e 𝑏. Ou seja, é definido um objeto, 
denotado por 𝑎 + 𝑏, que também pertence ao sistema dado e satisfaz as condições:] 
(𝑎 = 𝑏) < (𝑎 + 𝑐 = 𝑏 + 𝑐), 𝑎 + 𝑏 = 𝑏 + 𝑎, 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐  
3) Supondo que 𝑎 seja um objeto do sistema e 𝑚 um número inteiro positivo, 
entendemos por 𝑚𝑎 a soma de 𝑚 objetos iguais a 𝑎. É fácil ver que se 𝑎, 𝑏... são objetos 
do sistema e 𝑚, 𝑛 ... são inteiros positivos, então 
(𝑎 = 𝑏) < (𝑚𝑎 = 𝑚𝑏); 𝑚(𝑎 + 𝑏) = 𝑚𝑎 + 𝑚𝑏; (𝑚 + 𝑛) = 𝑚𝑎 + 𝑛𝑎; 𝑚(𝑛𝑎) =
(𝑚𝑛)𝑎; 1𝑎 = 𝑎.  
Assumimos que um significado é atribuído a 𝑚𝑎 para qualquer número real 𝑚 de forma 
que as equações anteriores ainda sejam satisfeitas. O objeto 𝑚𝑎 é o produto do 
número (real) 𝑚 pelo objeto 𝑎. 
4) Finalmente, assumimos que existe um objeto do sistema, que nós... denotamos 
por 0, de modo que, para qualquer objeto a, o produto do número 0 pelo objeto a é 
sempre o objeto 0, ou seja, 

0𝑎 = 1 
Se deixarmos 𝑎 − 𝑏 significar 𝑎 + (−1)𝑏, segue-se que: 

𝑎 − 𝑎 = 0, 𝑎 + 0 = 𝑎 
DEF. Sistemas de objetos para os quais as definições (1) – (4) são introduzidas de forma 
a satisfazer as condições dadas são chamados de sistemas lineares (PEANO, 1888 
apud MOORE, 1995, p. 268, tradução nossa). 

 

Para Baroni (2009), embora os axiomas de Peano sejam bastante semelhantes às 

propriedades fundamentais apresentadas por Grassmann, sua abordagem axiomática se tornou 

mais precisa com relação às propriedades das operações para descrever a estrutura. Além do 
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que, Peano aperfeiçoou a formulação ao retirar algumas redundâncias que apareciam nas 

propriedades fundamentais de Grassmann e ainda deu maior clareza aos conceitos de zero e de 

elemento oposto. 

Peano também apresentou exemplos dos seus sistemas, tais como os números reais, os 

números complexos, formações das primeiras espécies, vetores no plano e no espaço e 

formação de espécies superiores. As funções polinomiais de uma variável real foi o exemplo 

mais inovador dado por Peano, pois ele notou que se essas funções fossem de grau no máximo 

n, então elas formariam um sistema linear de dimensão n + 1 e assim, se fossem consideradas 

todas as funções, a dimensão desse sistema linear seria infinita (MOORE, 1995). 

Para Dorier (2000), a sistematização de Peano – fruto tanto de seu próprio trabalho com 

a lógica e com o formalismo, quanto de sua leitura sobre o Die Lineale Ausdehnungslehre – em 

que ele apresentou no primeiro capítulo os fundamentos da lógica dedutiva e apenas no último 

exibiu uma abordagem axiomática dos seus sistemas lineares, fez com se tornasse evidente o 

poderoso modelo de generalização vetorizado por essa abordagem. 

No mesmo ano Peano usou a linguagem e alguns resultados de sua abordagem 

axiomática em um artigo no qual ele resolveu um sistema de 𝑛 equações diferenciais de primeira 

ordem em 𝑛 variáveis. A solução apresentada por Peano foi muita mais moderna do que qualquer 

um de seus contemporâneos, ao utilizar ideias de norma euclidiana, autovalores, substituições 

lineares etc. Tal fato evidencia o poder de unificação e generalização que a axiomatização de 

Peano possuía, além do que propôs um interessante uso do modelo geométrico para 

generalização (DORIER, 2000). 

Apesar de tudo, o livro de Peano não exerceu grande influência fora da Itália e dentro dela 

apenas os seguidores de Grassmann se interessaram por parte de sua obra (eles não se 

interessaram por seus sistemas lineares). Os únicos que se interessaram por sua abordagem 

axiomática foram os matemáticos sob sua influência pessoal, a saber, Salvatore Pincherle (1853 

– 1936), Cesare Burali-Forti (1861 – 1931) e Roberto Marcolongo (1862 – 1943), os quais 

buscaram reafirmar a simplicidade e a praticidade do método axiomático proposto do Peano.  

Pincherle utilizou a abordagem axiomática para apresentar uma teoria para os 

operadores lineares de dimensão finita – trabalhando também com espaços lineares de 

dimensão infinita – e tentou generalizar essa abordagem para os operadores funcionais, 

contribuindo assim para um processo de unificação das dimensões finitas e infinitas dos 
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operadores (DORIER, 2000). 

Cesare Burali-Forti e Roberto Marcolongo, apresentaram uma definição axiomática 

(menos completa que a de Peano) dos métodos vetoriais e suas aplicações na Matemática e na 

Física, em especial, relacionados aos sistemas lineares e operadores lineares. Contudo, ainda 

que estivesse coadunada na busca por cálculo liberto de coordenadas, a sua abordagem tornou 

o poder de generalização e unificação limitado à estrutura da geometria e da física (DORIER, 

2000). 

Em paralelo aos esforços empregados pelos matemáticos citados anteriormente, em 

defesa da axiomatização dos métodos vetoriais, um outro tipo de tratamento axiomático para 

vetores emergiu do trabalho de Gaston Darboux (1842 – 1917), publicado em 1875, e no qual ele 

apresentou 4 proposições necessárias para a composição de forças na estática (lei do 

paralelogramo) em geometria pura (MOORE, 1995). 

 

Dados n segmentos direcionados, todos começando do mesmo ponto O, a lei da 
composição é tal que:  
1) A resultante total é única e não muda ao se permutar a ordem das resultantes 
parciais 
2) A resultante total não é alterada por uma rotação dos segmentos em torno de O  
3) A lei da composição reduz à adição algébrica para segmentos com a mesma 
direção 
4) A direção e magnitude da resultante são funções contínuas dos segmentos 
(DARBOUX, 1875 apud MOORE, 1995, p. 275, tradução nossa). 

 

Conforme é possível refletir no estudo de Moore (1995), os axiomas de Darboux 

fundamentaram também as diversas empreitadas rumo a defesa de uma abordagem axiomática 

no estudo dos vetores, e ainda, a criação de novos conceitos e artifícios algébricos, que por sua 

vez também contribuíram para a constituição da Álgebra Linear. Rudolf Schimmack (1881 – 

1912), Georg Hamel (1877 – 1954) e Hermann Weyl (1888 – 1955), foram alguns dos 

matemáticos que se empenharam sobre tal propósito. 

Entre 1903 e 1907, Schimmack e Hamel realizaram, de maneira independente, uma 

análise sobre os axiomas de Darboux, chegando ambos à conclusão de que a independência do 

quarto axioma era equivalente a existência de uma solução real descontínua 𝑓 que satisfizesse 

a equação funcional 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) para todos reais 𝑥 e 𝑦. Como Hamel havia dado 

uma solução para esse tipo de equação em 1901, chegou à conclusão de que os axiomas para a 

adição de vetores exigiam um axioma de continuidade (MOORE, 1995). 
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 Além disso, Hamel também provou a existência do que chamou de ‘base para todos os 

números’ que, em termos modernos, remonta a noção de base para o espaço vetorial dos 

números reais sobre o campo dos números racionais. Duas noções equivalentes ao conceito de 

base coexistiam, a saber, a de um conjunto máximo linearmente independente e a de um 

conjunto ortogonal máximo, contudo, em espaços de dimensão infinita elas divergiam. Hamel 

adotou a primeira ideia e, por tratar-se de um contexto particular, fez emergir a noção do que 

ficou conhecido como ‘Base de Hamel’ (MOORE, 1995). 

Weyl, por sua vez, apresentou uma definição axiomática de um espaço afim com base 

no espaço vetorial não limitado ao espaço tridimensional, os quais nomeou como variedades 

vetoriais lineares. Seu propósito era de mostrar como os axiomas da estrutura afim poderiam ser 

aplicados perfeitamente no 𝑅𝑛 e nas equações lineares, além de também ter defendido que a 

teoria axiomática dos espaços vetoriais poderia ser deduzida naturalmente das equações 

lineares em vez da geometria, e assim, acabou por axiomatizar a noção de um espaço vetorial 

de dimensão finita sobre os reais (MOORE, 1995). 

Apesar de ter sido o primeiro a teorizar de forma clara a estrutura linear de 𝑅𝑛 que, em 

sua concepção, era a base da teoria das equações lineares, os esforços de Weyl – assim como 

os de Peano, Pincherle, Burali-Forte e Marcolongo – não obtive grande repercussão e esteve, em 

sua maioria, limitado à uma visão geométrica do processo, não avançado assim mais do que 

Grassmann havia caminhado. Desse modo, a noção de Espaços Vetoriais axiomáticos teve que 

ser redescoberta uma terceira vez, no contexto do que conhecemos hoje por Análise Funcional 

e Álgebra Moderna. 

Com relação à Análise Funcional, cuja fundamentação encontra-se no estudo das 

equações diferenciais e sua utilização na resolução de problemas relacionados à linearidade, a 

adoção dos espaços vetoriais de funções contribuiu para a axiomatização desse campo de 

investigação, principalmente a partir da definição geral, dada por Frédéric Riesz (1880 - 1965) 

em 1918, acerca de um subespaço vetorial normal e fechado de funções. 

É nesse contexto que, durante a década de 1920, os trabalhos de Hans Hahn (1879 – 

1934), Norbert Wiener (1894 – 1964) e Stefan Banach (1892 – 1945) emergiram. A descoberta, 

de maneira independente, da noção de um Espaço Vetorial Normado, a partir do interesse em 

generalizar propriedades algébricas e topológicas de vários espaços, forneceram importantes 

contribuições ao processo de axiomatização dos Espaços Vetoriais (MOORE, 1995). 
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Em 1934, Andrei Kolmogorov (1903 – 1987), definiu de maneira mais restrita um espaço 

vetorial topológico, exigindo ainda que esse espaço tivesse uma topologia no qual a adição e a 

multiplicação escalar fossem contínuas. Em 1935, de maneira independente, John Von 

Neumann (1903 – 1957) também desenvolveu a noção de Espaço Vetorial Topológico ao 

generalizar completude de espaços métricos para espaços topológicos (MOORE, 1995). 

Tais estudos, dentro da Álgebra Topológica, forneceram bases para a constituição da 

noção de módulo topológico, a qual seria fundamental para a generalização e unificação do 

conceito de Espaço Vetorial nos anos seguintes, como veremos mais a diante. 

No contexto da Álgebra Topológica, à Emmy Noether (1882 – 1935) é creditado o mérito 

do pioneirismo em apresentar os conceitos modernos de anel, de ideal e de módulo sobre um 

anel em 1921. A preocupação de Noether com a teoria algébrica dos números, na perspectiva de 

Dedekind, tornou natural para ela formular a noção de um módulo sobre um anel, bem como 

restringir sua atenção aos módulos que eram finitos, isto é, gerados finitamente (MOORE, 1995). 

No ano de 1929, Noether publicou um artigo sobre álgebras de dimensão finita no qual 

apresentou a definição moderna de módulo sobre um anel de maneira mais simples do que havia 

feito em 1921. Seu propósito era reunir a teoria das álgebras com a teoria das representações de 

grupo (que havia sido unificada na obra de Frobenius, mas que se perdeu no caminho), o que a 

permitiu relacionar as noções de transformação linear, matriz e módulo (MOORE, 1995). 

 

Como B. L. Van der Waerden me comunicou, pode-se obter uma conexão invariável, 
independente da escolha específica da base, separando os conceitos de 
transformação linear e matriz. Uma transformação linear é um homomorfismo de dois 
módulos de formas lineares; uma matriz é uma expressão (a representação) desse 
homomorfismo por uma escolha definida de base (NOETHER, 1929 apud MOORE, 
1995, p. 300, tradução nossa). 

 

Tais noções foram apresentadas de maneira mais clara por Van der Waerden (1903 – 

1996). 

Em 1930 e 1931 ele publicou os dois volumes de seu livro Moderne Algebra, produzido 

com base em palestras ministras por Emmy Noether e Emil Artin (1898 – 1962) e que foi 

altamente influente. No primeiro volume, ele definiu um módulo como um grupo abeliano aditivo 

com um domínio de operadores (isto é, um homomorfismo) que forma um anel e satisfaz certos 

axiomas (MOORE, 1995). 
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No segundo volume, Van der Waerden dedicou um capítulo inteiro aos módulos, mais 

precisamente aos módulos unitários finitamente gerados que têm uma base, que ele chamou 

módulos de formas lineares sobre um anel K, e assim, no capítulo intitulado ‘Álgebra Linear’ o 

supracitado matemático definiu a Álgebra Linear como o estudo de módulos sobre um anel e 

seus homomorfismos (transformações lineares), os quais são escritos na forma de matrizes 

quando o módulo tem uma base finita (MOORE, 1995). 

Com base no que fora exposto, é possível observar que a abordagem axiomática dos 

vetores, propostas por Peano e Darboux, permitiu o tratamento mais fácil e prático para a 

resolução de problemas de linearidade, contudo, da mesma maneira como a geometria n-

dimensional de Grassmann, não tiveram grandes repercussões, ainda que os matemáticos que 

usaram tais abordagens tivessem realizados descobertas interessantes. 

Assim, a facilidade e praticidade que uma abordagem axiomática e formal proporciona 

ao estudo dos objetos estudados em Álgebra Linear tornou-se mais expressiva quando os 

processos de unificação e generalização de conceitos dentro da Análise Funcional e das 

Estruturas Algébricas foram alcançados, permitindo assim, a constituição do conceito de 

Espaço Vetorial.  

 

5 CONSIDERAÇÕES 

 

Neste trabalho tínhamos por objetivo investigar como o formalismo e a axiomatização se 

fizeram presentes no âmbito dos processos de unificação e generalização inerentes ao 

desenvolvimento histórico-epistemológico de conceitos subjacentes à Álgebra Linear. 

Diante do que fora apresentado, foi possível observar que os conceitos que compõem a 

Álgebra Linear são advindos de difentes épocas e áreas de estudo – tais como Álgebra, 

Geometria e Cálculo – e em cada uma dessas etapas/zona de investigação a necessidade de 

processos de unificação e generalização evocou a adoção de uma linguagem possibilitadora 

desses processos. 

O tratamento intuitivo dos sistemas de equações lineares no início do século XVIII foi o 

marco inicial da emersão de conceitos subjacentes à Álgebra Linear, mais precisamente, os de 

Dependência, Posto e Dualidade. A funcionalidade do formalismo, como linguagem unificadora 

das equações e n-uplas com relação a linearidade, proposto por Frobenius, pode ser percebida 
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por sua contribuição para o desenvolvimento do conceito de Posto, em um caráter mais 

generalizado, que por sua vez tornou mais simples a resolução de problemas lineares. 

A busca por um cálculo geométrico liberto de coordenadas, tal qual Leibniz preconizava, 

foi perseguido por muitos matemáticos e possibilitou grandes contribuições ao cálculo vetorial 

e até mesmo aos Espaços Vetoriais. Grassmann foi o primeiro a avançar rumo à uma geometria 

n-dimensional e, na oportunidade, apresentou conceitos da Álgebra Linear em um caráter mais 

unificador e generalizante, contudo, a linguagem formal adotada por ele não foi suficiente para 

a aceitação de seu trabalho na academia 

Ao compreender as potencialidades do trabalho de Grassmann, Peano dedicou-se em 

reapresentar a referida obra de maneira mais acessivel e a fez por meio de uma abordagem 

axiomática. O processo axiomático também adotado por Peano no que chamou de sistemas 

lineares (espaços vetoriais sobre os reais), evidenciou a praticidade advinda desse tipo de 

abordagem em relação aos demais métodos resolutivos. 

A leitura das abordagens de Grassmann e de Peano em seus trabalhos nos evidenciam a 

interdependência entre as linguagens formal e axiomática no processo de unificação e 

generalização dos espaços vetoriais e, de maneira geral, nos conceitos subjacentes à Álgebra 

Linear. Assim, a relação entre esses aspectos foi redescoberto no contexto da Análise Funcional 

e da Álgebra Topológica. 

No contexto da Análise Funcional, os espaços vetoriais foram redescobertos por meio e 

uma abordagem axiomática que permitiu a unificação e generalização de diversos contextos, 

dentro os quais, o das funções. Paralelamente a isso, Álgebra Moderna figurou como contexto 

de amadurecimento e consolidação de uma definição de Espaço Vetorial como um módulo 

topológico sobre um anel. 

Desse modo, diante do que fora apresentado, é possível concluir que o formalismo e 

axiomatização surgem como linguagens técnicas complementares e necessárias aos processos 

de unificação e generalização de problemas de linearidade, além do que permitiram a 

constituição da Álgebra Linear como campo que estuda os módulos sobre um anel e seus 

homomorfismos, que conhecemos por transformações lineares, os quais são representados por 

matrizes quando o módulo tem uma base finita.   
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